Extended Lagrangian free energy molecular dynamics.

نویسندگان

  • Anders M N Niklasson
  • Peter Steneteg
  • Nicolas Bock
چکیده

Extended free energy Lagrangians are proposed for first principles molecular dynamics simulations at finite electronic temperatures for plane-wave pseudopotential and local orbital density matrix-based calculations. Thanks to the extended Lagrangian description, the electronic degrees of freedom can be integrated by stable geometric schemes that conserve the free energy. For the local orbital representations both the nuclear and electronic forces have simple and numerically efficient expressions that are well suited for reduced complexity calculations. A rapidly converging recursive Fermi operator expansion method that does not require the calculation of eigenvalues and eigenfunctions for the construction of the fractionally occupied density matrix is discussed. An efficient expression for the Pulay force that is valid also for density matrices with fractional occupation occurring at finite electronic temperatures is also demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Next generation extended Lagrangian first principles molecular dynamics.

Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dyna...

متن کامل

Molecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...

متن کامل

Curvy-steps approach to constraint-free extended-Lagrangian ab initio molecular dynamics, using atom-centered basis functions: convergence toward Born-Oppenheimer trajectories.

A dynamical extension of the "curvy-steps" approach to linear-scaling self-consistent field calculations is presented, which yields an extended-Lagrangian formulation of ab initio molecular dynamics. An exponential parametrization of the one-electron density matrix, expressed in terms of atom-centered Gaussian basis functions, facilitates propagation along the manifold of density matrices in a ...

متن کامل

Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consiste...

متن کامل

Molecular Dynamics and Docking Investigations of Several Zoanthamine-Type Marine Alkaloids as Matrix Metaloproteinase-1 Inhibitors

Zoanthamine-type alkaloids display a wide spectrum of biological effects. This study aimed to examine the inhibitory effects of norzoanthamine and its ten homologues of zoanthamine class on human fibroblast collagenase by modeling a three-dimensional structure of the ligands at collagenase using energy minimization, docking, molecular dynamics simulation and MM-PB/GBSA binding free energy calcu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 16  شماره 

صفحات  -

تاریخ انتشار 2011